pydata

Keep Looking, Don't Settle

pandas data describe to get summary information

# pandas DataFrame describe for categorical and numeric data
# based on dtypes(object or numeric), check the summary info separately

import pandas as pd
import numpy as np


iris = pd.read_csv(r'H:\python\data\iris.csv')
# data info with each column dtype
iris.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 150 entries, 0 to 149
Data columns (total 5 columns):
sepal _length    150 non-null float64
sepal_width      150 non-null float64
petal_length     150 non-null float64
petal_width      150 non-null float64
iris_class       150 non-null object
dtypes: float64(4), object(1)
memory usage: 7.0+ KB
def check_qual(indata):
    return indata.select_dtypes(include = ['object']).describe()

def check_quant(indata):
    return indata.select_dtypes(exclude = ['object']).describe()


check_qual(iris)
iris_class
count 150
unique 3
top Iris-setosa
freq 50
check_quant(iris)
sepal _length sepal_width petal_length petal_width
count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.054000 3.758667 1.198667
std 0.828066 0.433594 1.764420 0.763161
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000